Variable Structure Control ~ Disturbance Rejection

Harry G. Kwatny

Department of Mechanical Engineering & Mechanics Drexel University

Outline

- Linear Tracking & Disturbance Rejection
- Variable Structure Servomechanism
- Nonlinear Tracking & Disturbance Rejection

Disturbance Rejection Setup

Objectives

Regulator Problem: Find a controller to achieve the following 1) Regulation: $z(t) \rightarrow 0$ as $t \rightarrow \infty$ 2) (Internal) Stability: Achieve specified transient response Robust Regulator Problem: Find a solution to the Regulator Problem that satisfies

3) Robustness: 1) and 2) should be maintained under specified small perturbations of plant and/or control parameters

Solution: Part 1- Regulation

Consider the possibility of a control $\overline{u}(t)$ that produces a trajectory $\overline{x}(t)$ for some unspecified initial state \overline{x}_0 and any initial disturbance vector w_0 , so that the corresponding $\overline{z}(t) \equiv 0$. Then, $\overline{x}, \overline{u}, w$ must satisfy $\dot{\overline{x}} = A\overline{x} + Ew + B\overline{u}$ $\dot{w} = Zw$ $0 = C\overline{x} + Fw + D\overline{u}$ Assume a solution of the form: $\overline{x} = Xw, \overline{u} = Uw \Longrightarrow$ XZw = AXw + Ew + BUw $\forall w$ 0 = CXw + Fw + DUw

Thus, the hypothesized control $\overline{u}(t)$ exists if there are X,U that satisfy

Solution: Part 2- Stability

Define $\delta u, \delta x$

 $u = \overline{u} + \delta u = Uw + \delta u$ $x = \overline{x} + \delta x = Xw + \delta x \Longrightarrow \delta \dot{x} = A\delta x + B\delta u$

Now, if (A, B) is controllable, it easy to choose $\delta u = K \delta x$ so that the closed loop $\delta \dot{x} = (A + BK) \delta x$ has desired transient characteristics.

With *K* chosen, the control can be written as a function of the system states *x*, *w*

$$u = \overline{u} + \delta u = Uw + \delta u = Uw + K\delta x \Longrightarrow$$

$$u = Uw + K(x - Xw) = \begin{bmatrix} K & U - KX \end{bmatrix} \begin{bmatrix} x \\ w \end{bmatrix} = K_{TOT} \begin{bmatrix} x \\ w \end{bmatrix}$$

Solution: Part 3- Observation

The control will be implemented using estimates of the composite state (x, w). Consider the composite system $\frac{d}{dt} \begin{bmatrix} x \\ w \end{bmatrix} = \begin{bmatrix} A & E \\ 0 & Z \end{bmatrix} \begin{bmatrix} x \\ w \end{bmatrix} + \begin{bmatrix} B \\ 0 \end{bmatrix} u$ $y = \overline{C}x + \overline{F}w$

If the composite system is observable, we can choose a matrix

L, so that the following observer has the desired dynamics:

$$\frac{d}{dt} \begin{bmatrix} \hat{x} \\ \hat{w} \end{bmatrix} = \begin{bmatrix} A & E \\ 0 & Z \end{bmatrix} \begin{bmatrix} \hat{x} \\ \hat{w} \end{bmatrix} + \begin{bmatrix} B \\ 0 \end{bmatrix} u + L \left(\overline{C} \hat{x} + \overline{F} \hat{w} - y \right)$$

Properties of the Loop

Example

Example

We make only one change

$$u = K\Delta \hat{x} \Longrightarrow u = \psi(\Delta \hat{x}), \quad \psi_i(\Delta \hat{x}) = \begin{cases} \Delta u_i^+ & s_i(\Delta \hat{x}) > 0\\ \Delta u_i^+ & s_i(\Delta \hat{x}) < 0 \end{cases}, \quad s(\Delta \hat{x}) = G\Delta \hat{x}$$

Closed Loop Dynamics

Combine the estimator equation:

$$\frac{d}{dt}\hat{x} = A\hat{x} + Ew + Bu + L_1\overline{C}(\hat{x} - x) + L_1\overline{F}(\hat{w} - w)$$

with the estimator equation

$$\frac{d}{dt}\hat{w} = Z\hat{w} + L_2\overline{C}(\hat{x} - x) + L_2\overline{F}(\hat{w} - w)$$

$$\frac{d}{dt}(\hat{x} - X\hat{w}) = A\hat{x} + Ew - XZ\hat{w} + (L_1 - XL_2)\left[\overline{C} \quad \overline{F}\right]\begin{bmatrix}\hat{x} - x\\\hat{w} - w\end{bmatrix} + BU\hat{w} + B\delta u$$
apply $XZ\hat{w} = AX\hat{w} + E\hat{w} + BU\hat{w}$

$$\frac{d}{dt}(\hat{x} - X\hat{w}) = A(\hat{x} - X\hat{w}) + E(w - \hat{w}) + (L_1 - XL_2)\left[\overline{C} \quad \overline{F}\right]\begin{bmatrix}\hat{x} - x\\\hat{w} - w\end{bmatrix} + B\delta u$$

Closed Loop Dynamics, 2

error

Sliding Behavior

Let $\delta \hat{x} = \hat{x} - \hat{\overline{x}}$ and define a new coordinates $\delta \hat{x} \mapsto (\delta \chi_1, \delta \chi_2), \delta \chi_1 \in \mathbb{R}^{n-m}, \delta \chi_2 \in \mathbb{R}^m$ $\begin{bmatrix} M \\ K \end{bmatrix} = \begin{bmatrix} N & B \end{bmatrix}^{-1}$ $\delta \hat{x} = N \delta \chi_1 + B \delta \chi_2 \Leftrightarrow \begin{bmatrix} \delta \chi_1 \\ \delta \chi_2 \end{bmatrix} = \begin{bmatrix} M \\ (KB)^{-1} & K \end{bmatrix} \delta \hat{x}$

Note: MB = 0, KN = 0, sliding $\Leftrightarrow \delta \chi_2 \equiv 0 \Leftrightarrow K \delta \hat{x} = 0$

$$\frac{d}{dt} \begin{bmatrix} \delta \chi_1 \\ x - \hat{x} \\ w - \hat{w} \end{bmatrix} = \begin{bmatrix} MAN & M(L_1 - XL_2)\overline{C} & M(L_1 - XL_2)\overline{F} \\ 0 & A - L_1\overline{C} & E - L_1\overline{F} \\ 0 & -L_2\overline{C} & Z - L_2\overline{F} \end{bmatrix} \begin{bmatrix} \delta \chi_1 \\ x - \hat{x} \\ w - \hat{w} \end{bmatrix}$$

Reaching Behavior

Assume the switching control ψ is designed to stabilizes the switching manifold $K\delta x = 0$ for the perturbation system $\delta \dot{x} = A\delta x + B\psi(s), s = K\delta x$

Two important results follow

- trajectories are steered in finite time to a domain \mathfrak{D} that contains the subspace $K\delta \hat{x} = 0$
- \mathfrak{D} shrinks exponentially to the subspace $K\delta \hat{x} = 0$

Reaching, 2

Theorem : For a fixed $\Delta > 0$, there exists a finite time $T(\Delta)$ such that $\delta \hat{x}$ is confined to the domain

$$\left|k_{i}^{T}\delta\hat{x}\right| \leq \Delta, i = 1, \dots, m, \forall t \geq T(\Delta).$$

Moreover, $\Delta \rightarrow 0, T(\Delta) \rightarrow \infty$.

- this means that sliding does not occur on s = 0 but this manifold is reached asymptotically as $\hat{x}(t) \rightarrow x(t), \hat{w}(t) \rightarrow w(t)$
- let $\delta \hat{x}^*(t)$ denote an ideal sliding solution. $\delta \hat{x}(t)$ can be viewed as non-ideal sliding in that it can be shown that there exists a constant *c* such that for all $t \ge T(\Delta)$ $\|\delta \hat{x}^*(t) - \delta \hat{x}(t)\| \le c\Delta$
- The performance variables can be expressed as
 - $z = C(x \hat{x}) + F(w \hat{w}) + D\delta u$

as $t \to \infty$, we have $(x - \hat{x}) \to 0, (w - \hat{w}) \to 0, \delta u \to \delta u_{eq} \to 0 \Longrightarrow z \to 0$